The Propagation of Radio Waves in an Ionised Atmosphere

Author:

Burnett D.

Abstract

Larmor has shown that if the upper atmosphere contains electrons (charge ε, mass m, density ν) and if collisions between these electrons and molecules—and also the forces between the electrons themselves—are negligible, then electric waves are propagated as if the dielectric constant of the medium were reduced by , from which it appears that, so long as the approximations are valid, the velocity of propagation of the waves can be increased indefinitely by increasing either the electron density or the wave-length λ. Several later authors have attempted to take account of the collisions between electrons and molecules, assuming free paths or velocities according to Maxwell's laws for a uniform gas, and it appears that the above law holds only for short waves; but it is doubtful how far the properties of a uniform gas can be assumed when periodic forces are acting. In the first part of this paper an alternative method of solution is given by means of Boltzmann's integral equation for a non-uniform gas, the analysis being similar to that used by Lorentz in discussing the motion of free electrons in a metal. Only the case when ν is small is considered, i.e. the interactions of electrons with one another and with positive ions are neglected. How far it is possible to increase the velocity of propagation by increasing ν is a more difficult question, but it seems possible that the forces between the electrons and ions may impose a limit just as collisions with neutral molecules limit the effect of increasing the wave-length.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference3 articles.

1. The Propagation of Electromagnetic Waves in a Refracting Medium in a Magnetic Field

2. Pedersen , The Propagation of Radio Waves, chaps. vii, viii

3. Lorentz , Theory of Electrons, Note 29

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3