Homology of groups of surfaces in the 4-sphere

Author:

Gordon C. McA.

Abstract

1. Let F be a closed, connected, orientable surface of genus g ≥ 0 smoothly embedded in S4, and let π denote the fundamental group π1(S4F). Then H2(π) is a quotient of H2(S4F) ≅ H1(F) ≅ Z2g. If F is unknotted, that is, if there is an ambient isotopy taking F to the standardly embedded surface of genus g in S3S4, then π ≅ Z, so H2(π) = 0. More generally, if F is the connected sum of an unknotted surface and some 2-sphere S, then π ≅ π1 (S4S), so again H2(π) = 0. The question of whether H2(π) could ever be non-zero was raised in (5), Problem 4.29, and (10), Conjecture 4.13, and answered in (7) and (1). There, surfaces are constructed with H2(π)≅ Z/2, and hence, by forming connected sums, with H2(π) ≅ (Z/2)n for any positive integer n. In fact, (1) produces tori T in S4 with H2(π) ≅ Z/2, and hence surfaces of genus g with H2(π) ≅ (Z/2)g.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. (7) Maeda T. On the groups with Wirtinger presentations, Math. Seminar Notes, Kwansei Gakuin Univ. (09 1977).

2. Homomorphs of knot groups

3. (1) Brunner A. M. , Mayland E. J. Jr and Simon J. Knot groups in S 4 with non trivial homology. Preprint.

4. Unknotting problems of 2-spheres in 4-spheres;Suzuki;Math. Seminar Notes, Kobe Univ.,1976

5. Wirtinger presentations of knot groups

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtually symmetric representations and marked Gauss diagrams;Topology and its Applications;2022-02

2. Circle-Valued Morse Theory for Frame Spun Knots and Surface-Links;Michigan Mathematical Journal;2017-11-01

3. On slope genera of knotted tori in 4-space;Pacific Journal of Mathematics;2013-02-28

4. The fundamental crossed module of the complement of a knotted surface;Transactions of the American Mathematical Society;2009-04-03

5. GROUPS OF TWO-BRAID VIRTUAL KNOTS;Journal of Knot Theory and Its Ramifications;2007-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3