Author:
Beem John K.,Ehrlich Paul E.
Abstract
AbstractA space–time (M, g) is singular if it is inextendible and contains an inex-tendible nonspacelike geodesic which is incomplete. In this paper nonspacelike incompleteness is studied using the Lorentzian distance d(p, q). A compact subset Kof M causally disconnects two divergent sequences {pn} and {qn} if 0 < d(pn,qn) < ∞ for all n and all nonspacelike curves from pn to qn meet K. It is shown that no space–time (M, g) can satisfy all of the following three conditions: (1) (M, g) is chronological, (2) each inextendible nonspacelike geodesic contains a pair of conjugate points and (3) there exist two divergent sequences {pn} and {qn} which are causally disconnected by a compact set K. This particular result extends a theorem of Hawking and Penrose. It also implies that if (M, g) satisfies conditions (1) and (3), then there is a Co-neigh-bourhood of g in the space of metrics conformal to g such that any metric in this neighbourhood which satisfies the generic condition and the strong energy condition is nonspacelike incomplete.
Publisher
Cambridge University Press (CUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献