Author:
GOEL KRITI,VERMA J. K.,MUKUNDAN VIVEK
Abstract
AbstractLet (R, ) be an analytically unramified local ring of positive prime characteristic p. For an ideal I, let I* denote its tight closure. We introduce the tight Hilbert function $$H_I^*\left( n \right) = \Im \left( {R/\left( {{I^n}} \right)*} \right)$$ and the corresponding tight Hilbert polynomial $$P_I^*\left( n \right)$$, where I is an m-primary ideal. It is proved that F-rationality can be detected by the vanishing of the first coefficient of $$P_I^*\left( n \right)$$. We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Specialization and integral closure
2. Form rings and regular sequences
3. A Note on Analytically Unramified Local Rings
4. [4] Hochster, M. and Huneke, C. . Tight closure in equal characteristic zero. Preprint Available at: http://www.math.lsa.umich.edu/hochster/msr.html (1999).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献