On conjectures of Moore and Serre in the case of torsion-free suspensions

Author:

Selick Paul

Abstract

Let p be a prime. A space X is said to have a homotopy exponent at p if multiplication by pr annihilates the p-torsion of πn(X) for some non-negative integer r independent of n. X is said to have totally finite rational homotopy if n πn (X) ⊗ ℚ is a finite vector space. Moore has conjectured that these properties are related for finite simply connected CW complexes.Moore's Conjecture. A space having the homotopy type of a finite simply connected CW complex has a homotopy exponent at p if and only if it has totally finite rational homotopy.For convenience I will divide the conjecture into its two implications so that I can refer to each separately.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference22 articles.

1. On the double suspension E2;Toda;J. Inst. Polytech. Osaka City Univ,1956

2. (17) Neisendorfer J. Smaller exponents for Moore spaces. (To appear.)

3. The splitting of the K�nneth sequence for generalized cohomology

4. Some examples of spaces with and without homotopy exponents;Neisendorfer;Proc. of Current Trends in Alg. Top., Canad. Conf. Proc. Series,1982

5. 3-primary exponents

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential growth in the rational homology of free loop spaces and in torsion homotopy groups;Annales de l'Institut Fourier;2024-07-03

2. Homotopy Fibrations with a Section After Looping;Memoirs of the American Mathematical Society;2024-07

3. Moore’s conjecture for connected sums;Canadian Mathematical Bulletin;2023-12-04

4. Some asymptotic formulae for torsion in homotopy groups;Canadian Journal of Mathematics;2023-06-29

5. p-Hyperbolicity of homotopy groups via K-theory;Mathematische Zeitschrift;2022-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3