A note on unknotting number

Author:

Bleiler Steven A.

Abstract

For a classical knot K in the 3-shere, the unknotting number u(K) is defined to be the smallest number of crossing changes required to obtain the unknot, the minimum taken over all the regular projections. This dependence on projection makes the unknotting number a difficult knot invariant. While some algebriac methods exist to give a lower bound for u(K) the unknotting number for approximately one-sixth of the 84 knots with nine or fewer crossings remains unddetermined, see [9] or [7]. For an upper bound, one is usually forced to intellgently experiment knotting various projections of the knot under study. Usual practice is to work with a minimal crossingprojection; indeed, it has long been a ‘folk’ conjecture that the unknotting number is realized in such a projection ([5], p. 21). This note shows by example that this conjecture is false. This remarkable knot is rational, i.e. a 2-bridge knot, and hence alternating. Thus there is also the surprising result that the unknotting number of an alternating kniot is not necessarily realized in a minimal alternating projecting.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference11 articles.

1. On a certain numerical invariant of link types

2. [7] Lickorish W. R. . The unknotting number of a classical knot, preprint.

3. [2] Bleiler S. . Unknotting rational knots (to appear).

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Playing with Knots;Foundations for Undergraduate Research in Mathematics;2022

2. Unknotting operations on knots and links;Journal of Knot Theory and Its Ramifications;2021-02

3. A Counterexample to the Bernhard–Jablan Unknotting Conjecture;Experimental Mathematics;2019-05-10

4. Statics and dynamics of DNA knotting;Journal of Physics A: Mathematical and Theoretical;2018-01-03

5. On Minimal Unknotting Crossing Data for Closed Toric Braids;KYUNGPOOK MATH J;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3