Integrals with a large parameter. The continuation of uniformly asymptotic expansions

Author:

Ursell F.

Abstract

AbstractIn the integral the functions g(z), f(z, α) are analytic functions of their arguments, and N is a large positive parameter. When N tends to ∞, asymptotic expansions can usually be found by the method of steepest descents, which shows that the principal contributions arise from the saddle-points, i.e. the values of z at which ∂f/∂z = 0. The position of the saddle-points varies with α, and if for some α (say α = 0) two saddle-points z1(α), z2(α) coincide (say at z = 0) the ordinary method of steepest descents gives expansions which are not uniformly valid for small α. In an earlier paper (Chester, Friedman and Ursell (1)), a uniform asymptotic expansion of the formwas obtained, where Ai and Ai' are the Airy function and its derivative respectively, and where the regular functions A(α) and ζ(α) are given byThe coefficient functions As(α), Bs(α) are also regular functions of a for which, however, no explicit expressions are known. This Airy-function expansion was shown to be valid in a circle |α| ≥ Rα, independent of N. Airy-function expansions of the same form but involving slightly different argument functions instead of our A(α) and ζ(α) have long been known but are valid only in a region which shrinks to the point α = 0 as N → ∞. This improvement in the region of validity greatly simplifies the matching of steepest-descents and Airy-function expansions across the common region of validity.In the present paper a further improvement is obtained. The validity of our Airyfunction expansion is extended to a still larger region which may be unbounded and which in many practical cases covers the whole region of interest, so that no matching with other expansions is needed. For this purpose the relation between steepestdescents and Airy-function expansions is investigated.It is easy to see that by a process of matching the steepest-descents coefficients can be expressed in terms of the Airy-function coefficients. It is now shown that conversely the Airy-function coefficients can be expressed in terms of the steepestdescents coefficients, and that they involve the two saddle-points symmetrically.It is thus possible to infer desired properties of the Airy-function coefficients (e.g.analytic continuation and boundedness) from the corresponding properties of the steepest-descents coefficients, and hence to infer the equivalence of the two expansions (except near α = 0).The following result is typical. Suppose that the steepest-descents expansion can be shown to be valid in a region (excluding a neighbourhood of α = 0) of the α-plane, and suppose further that the steepest-descents coefficients and the functions ζ(α) and A (α) can be shown to satisfy certain simple conditions of regularity and boundedness.(In practice it is usually not difficult to verify these.) Then it is shown that our Airy-function expansions can be continued into the same region and that it is a valid asymptotic expansion of the integral there.These conditions of boundedness are not satisfied in a certain integral arising in the study of Kelvin's ship-wave pattern, where the coefficients at one saddle-point become unbounded near the track of the disturbance. The argument is modified to show that, nevertheless, the Airy-function expansion holds uniformly up to the track of the disturbance.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Airy theory and its region of quantitative validity;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-01

2. Kelvin–Havelock–Peters approximations to a classical generic wave integral;Applied Mathematical Modelling;2020-01

3. Influence of Froude number and submergence depth on wave patterns;European Journal of Mechanics - B/Fluids;2019-05

4. The Kelvin–Havelock–Peters farfield approximation to ship waves;European Journal of Mechanics - B/Fluids;2018-07

5. Uniform asymptotics as a stationary point approaches an endpoint;IMA Journal of Applied Mathematics;2018-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3