Author:
BONET JOSÉ,DOMAŃSKI PAWEŁ
Abstract
AbstractWe study the dynamical behaviour of composition operators Cϕ defined on spaces (Ω) of real analytic functions on an open subset Ω of ℝd. We characterize when such operators are topologically transitive, i.e. when for every pair of non-empty open sets there is an orbit intersecting both of them. Moreover, under mild assumptions on the composition operator, we investigate when it is sequentially hypercyclic, i.e., when it has a sequentially dense orbit. If ϕ is a self map on a simply connected complex neighbourhood U of ℝ, U ≠ ℂ, then topological transitivity, hypercyclicity and sequential hypercyclicity of Cϕ:(ℝ) → (ℝ) are equivalent.
Publisher
Cambridge University Press (CUP)
Reference34 articles.
1. Hyperbolic Complex Spaces
2. S. Zaj c. Hypercyclicity of composition operators in domains of holomorphy, preprint (2012).
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献