The Stokes constants for a cluster of transition points

Author:

Fröman Nanny,Fröman Per Olof,Lundborg Bengt

Abstract

AbstractThe connection problems associated with the one-dimensional Schrödinger equation in the presence of a general isolated cluster containing an unspecified number of complex transition points in unspecified positions can be studied by means of the phase-integral method developed by Fröman and Fröman. Any anti-Stokes line, i.e. any line in the complex z-plane on which the solutions behave as travelling waves with constant flow, must asymptotically (i.e. in the limit of large values of |z|) point in one of m +2 possible directions, which divide the region around the cluster into m +2 sectors, where m is the degree of the cluster. The tracing of these waves from an anti-Stokes line, bounding a sector, to an anti-Stokes line constituting the other boundary of the same sector is expressed by means of the Stokes constant for the sector in question. This paper examines the relation between these m + 2 Stokes constants in the general case when the transition points in the cluster may also be close-lying in the sense that it is impossible to treat them individually, when the solutions are traced. Under the assumption that the effective potential in the Schrodinger equation is a regular analytic function in a sufficiently large region containing the cluster, it is shown that the m + 2 Stokes constants are in general constrained by three algebraic relations, which are obtained for arbitrary m. The cases m = 1, 2, 3 and 4 are worked out in detail.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stokes constants for a singular wave equation;Journal of Mathematical Physics;2005-05

2. References;Physical Problems Solved by the Phase-Integral Method;2002-06-13

3. Problems with solutions;Physical Problems Solved by the Phase-Integral Method;2002-06-13

4. Description of the phase-integral method;Physical Problems Solved by the Phase-Integral Method;2002-06-13

5. Historical survey;Physical Problems Solved by the Phase-Integral Method;2002-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3