Author:
Gilmer Patrick,Livingston Charles
Abstract
Casson–Gordon invariants were first used to prove that certain algebraically slice knots in S3 are not slice knots [2, 3]. Since then they have been applied to a wide range of problems, including embedding problems and questions relating to boundary links [2, 10, 21, 25]. The most general Casson–Gordon invariant takes its value in L0(ℚ(ζd)(t)) ⊗ ℚ; here ζd denotes a primitive dth root of unity. Litherland [20] observed that one could usually tensor with ℤ(2) instead of ℚ, and in this way preserve the 2-torsion in the Witt group. He then constructed new examples of non-slice genus two knots which were detected with torsion classes in L0(ℚ(ζd)) ⊗ ℤ(2) modulo the image of L0(ℚ(ζd)) ⊗ ℤ(2).
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献