Abstract
A metric on a differentiable manifold induces a bilinear form on the tangent space at each point of the manifold. The set of tangent vectors orthogonal, with respect to this bilinear form, to the whole tangent space is a vector subspace of the tangent space: the metric is called non-degenerate or degenerate at the point according as the subspace is or is not empty. This paper is concerned with the geometry of manifolds having everywhere degenerate metrics.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献