Superconductors in Alternating Magnetic Fields

Author:

Shoenberg D.

Abstract

A method of studying magnetic properties in alternating fields and its application to the intermediate state of a superconducting sphere are described. It is shown that the behaviour of the sphere in alternating fields of frequencies between 10 and 100 is different from that in very slowly varying fields, the difference becoming less for lower frequencies and for smaller radius. When the specimen is in the intermediate state, energy losses are produced in it by the alternating field, showing that the induced currents are out of phase with the alternating field. The induced currents do not, however, flow in the same way as in a homogeneous isotropic conductor, and this is probably on account of an anisotropic structure of the specimen when in the intermediate state. This structure depends strongly on the amplitude of the alternating field in such a way that the effective average conductivity is increased with decreasing amplitude, and this amplitude effect depends on the size of the specimen. Evidence is given for a time lag in the magnetocaloric effect, and this time lag decreases with decrease of the size of the specimen, being of order sec. for a sphere of about 1 cm. diameter.In conclusion I wish to thank Prof. Lord Rutherford and Dr Cockcroft for their interest in this work; Dr Peierls for suggesting the experiment and for much valuable advice and assistance; Mr Shire for advice on some technical points; and various members of the staff of the Royal Society Mond Laboratory for help in the measurements.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3