On the short-wave asymptotic theory of the wave equation (∇2 + k2)ø = 0

Author:

Ursell F.

Abstract

ABSTRACTThe theory of time-periodic wave problems falls into two parts. On the one hand there is the rigorous formulation in terms of differential wave equations, on the other there are approximate theories like geometrical optics. It should be possible, in principle, to deduce the latter from the former by a logical process; but this has been done only for a few simple configurations, e.g. the circle. A possible approach to the solution of the general problem is suggested here, and is applied to a typical two-dimensional acoustical example. An arbitrary closed convex curve (satisfying certain regularity conditions) is emitting short sound waves towards infinity, the normal velocity V(s) exp (− iωt) is prescribed on the curve as a function of the arc-length s, and the potential is to be found, first on the curve and then at any point in the sound field. (Only the first part of the problem is treated in detail.) The potential ø(s) exp (− iωt) on the curve satisfies all the integral equationswhere G(s, s′) is any Green's function of the problem, and V(a) is prescribed. All the equations corresponding to different Green's functions have the same solution. An asymptotic and convergent short-wave solution can be found by iteration if G can be chosen explicitly so that the integral equation has a small kernel for high frequencies. At any point of the curve draw the local circle of curvature; then the explicit known solution for a source on this circle is (with slight modifications) a possible Green's function, and the equation formed with it has a small kernel and can be solved rigorously by iteration. If V(a) is independent of the frequency, the leading term in the resulting asymptotic expansion iswhere c is the velocity of sound and 2πk−1 is the (short) wavelength corresponding to the frequency ω/2π. If V(a) varies rapidly, as in diffraction theory, the iterative solution still gives a convergent asymptotic expansion, but the first approximation is then practically useless in the shadow region. Diffraction problems are not treated in the present paper.The present work appears to be the first practical and rigorous solution of a short-wave problem in optics or acoustics when a solution in closed form is not available. It is suggested that the technique (suitably combined with formal expansions) may be applicable to a wider class of radiation and diffraction problems.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3