A new approach to subcritical instability and turbulent transitions in a simple dynamo

Author:

Robbins K. A.

Abstract

AbstractThe onset of turbulence in many systems appears disorganized and unpredictable. However, the present detailed study of a well-known model reveals a series of well-defined transitions from steady motion to highly non-periodic behaviour. The bifurcation structure of this simple model, which describes both a reversing disc dynamo and Benard convection in thin fluid loops, is characteristic of a class of systems with subcritical instabilities. It is found that the bifurcation curve for this instability does not have a stable branch and that non-periodic and linearly stable steady solutions coexist. The boundary between transient and non-periodic behaviour is marked by a non-uniformity in the number of oscillations between reversals. This non-uniformity, not previously observed, is a striking corroboration of the model's relationship to the geodynamo. Other features of reversal in the disc dynamo such as the presence of two time scales in the oscillations are also exhibited by geomagnetic fields. In addition to a geometric description of the transitions, a one-dimensional mapping first constructed by Lorenz for the system beyond marginal stability, is extended to the subcritical regime. This type of mapping, which can be interpreted in terms of invariant surfaces of the system, may be of value in dissecting more general systems with subcritical Hopf bifurcations.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3