Author:
ANGEL OMER,BALKA RICHÁRD,PERES YUVAL
Abstract
AbstractGiven a sequence of n real numbers {Si}i⩽n, we consider the longest weakly increasing subsequence, namely i1 < i2 < . . . < iL with Sik ⩽ Sik+1 and L maximal. When the elements Si are i.i.d. uniform random variables, Vershik and Kerov, and Logan and Shepp proved that ${\mathbb E} L=(2+o(1)) \sqrt{n}$.We consider the case when {Si}i⩽n is a random walk on ℝ with increments of mean zero and finite (positive) variance. In this case, it is well known (e.g., using record times) that the length of the longest increasing subsequence satisfies ${\mathbb E} L\geq c\sqrt{n}$. Our main result is an upper bound ${\mathbb E} L\leq n^{1/2 + o(1)}$, establishing the leading asymptotic behavior. If {Si}i⩽n is a simple random walk on ℤ, we improve the lower bound by showing that ${\mathbb E} L \geq c\sqrt{n} \log{n}$.We also show that if {Si} is a simple random walk in ℤ2, then there is a subsequence of {Si}i⩽n of expected length at least cn1/3 that is increasing in each coordinate. The above one-dimensional result yields an upper bound of n1/2+o(1). The problem of determining the correct exponent remains open.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux (Russian);Vershik;Dokl. Akad. Nauk SSSR,1977
2. A variational problem for random Young tableaux
3. A combinatorial problem in geometry;Erdős;Composition Math.,1935
4. O. Angel , R. Balka , A. Máthé and Y. Peres Restrictions of Hölder continuous functions, submitted, arXiv:1504.04789.
5. Random walks in cones
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献