Abstract
Let G be an abelian discrete group, A a unital C*-algebra and an action of G on A, i.e. (A, G,) is a C*-dynamical system. Let K denote the kernel ker of and put R = G/K. The main purpose of this article is to determine the roles of K and R in the crossed product G A. This goal is achieved in Section 2, where we prove that G A is *-isomorphic to a twisted crossed product of R with C*(K) A with respect to the action 1 and a 2-cocycle related to the 2-cocycle determined by the extension G of R by K. Here is the obvious action of R on A.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decomposition of semigroup crossed products;AIP Conference Proceedings;2017
2. Twisted crossed products by coactions;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1994-06
3. Twisted crossed products of C*-algebras;Mathematical Proceedings of the Cambridge Philosophical Society;1989-09
4. C*-algebras associated with rotation groups and characters;manuscripta mathematica;1984-02