Some combinatorial results involving Young diagrams

Author:

James G. D.

Abstract

In the first half of this paper we introduce a new method of examining the q-hook structure of a Young diagram, and use it to prove most of the standard results about q-cores and q-quotients. In particular, we give a quick new proof of Chung's Conjecture (2), which determines the number of diagrams with a given q-weight and says how many of them are q-regular. In the case where q is prime, this tells us how many ordinary and q-modular irreducible representations of the symmetric group there are in a given q-block. None of the results of section 2 is original. In the next section we give a new definition, the p-power diagram, which is closely connected with the p-quotient. This concept is interesting because when p is prime a condition involving the p-power diagram appears to be a necessary and sufficient criterion for the diagram to be p-regular and the corresponding ordinary irreducible representation of to remain irreducible modulo p. In this paper we derive combinatorial results involving the p-power diagram, and in a later article we investigate the relevant representation theory.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Modular representations of symmetric groups

2. On a conjecture by Nakayama;Robinson;Trans. Roy. Soc.,1947

3. The Irreducible Representations of the Symmetric Groups

4. Note on a paper by J. S. Frame and G. de B. Robinson;Osima;Okayama Math. J.,1956

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partitions with Fixed Points in the Sequence of First-Column Hook Lengths;Annals of Combinatorics;2024-08-09

2. A Combinatorial Proof of Buryak-Feigin-Nakajima;The Electronic Journal of Combinatorics;2023-09-08

3. Identifying Young Diagrams Among Residue Multisets;Annals of Combinatorics;2023-03-06

4. Gordon Douglas James, 1945–2020;Bulletin of the London Mathematical Society;2022-11-28

5. Inclusion Mapping and Partition Theory;Journal of Physics: Conference Series;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3