Abstract
AbstractHow must n equal non-overlapping circles be packed on a sphere so that the angular diameter of the circles will be as great as possible? In the paper, the conjectured solutions of this problem for n = 18, 27, 34, 35, 40 are improved on the basis of an idea of Danzer. Using the theory of bar structures it is ascertained that, in these cases, the edge-length of the graphs of the circle-packings can be increased till, in the graphs, additional edges appear which prevent further motions apart from rigid motions. The cases of n = 17 and 32 are also dealt with and there are references to the possibilities of further applications of the method applied in this paper (n = 59, 80, 110, 122).
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. Punkte auf der Kugel. Drei Zusätze
2. Umiestnenie 17, 25 a 33 bodov na guli;Jucovič;Mat. Fyz. Časopis. Slovensk Akad. Vied.,1959
3. Punkte auf der Kugel. Drei Zusätze
4. Packing of 18 equal circles on a sphere;Goldberg;Elemente der Mathematik,1965
5. Über die Verteilung von Punkten auf der Kugel;Strohmajer;Ann. Univ. Sci. Budapest. Eötvös,1963
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献