Author:
BUGEAUD YANN,CHEUNG YITWAH,CHEVALLIER NICOLAS
Abstract
AbstractIn this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponentμin (1/2, 1) is equal to 2(1 −μ) forμ⩾$\sqrt2/2$, whereas forμ<$\sqrt2/2$it is greater than 2(1 −μ) and at most equal to (3 − 2μ)(1 − μ)/(1 −μ+μ2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) whenμtends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for μ ⩾ 0.565. . . .
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献