Abstract
The methods used to measure separately the electronic and lattice heat conductivities κeand κgin a metal are reviewed, and it is pointed out that care is necessary in interpreting the results in view of the underlying assumptions. The equations given by Wilson for κeand for the electrical conductivity σ are used to plot the theoretical values of the electronic Lorentz ratioLe= κe/σTas a function ofT, both for the monovalent metals and for a model metal with 1·8 × 10−2conduction electrons per atom, which is taken to represent bismuth sufficiently accurately for this purpose. Curves for κeand κgas functions ofTare given in both cases, and these, together with a comparison of the observed Lorentz ratio andLe, show that in the monovalent metals κgis unimportant at any temperature, but in bismuth it plays a major part at low temperatures, in agreement with experimental conclusions. Quantitatively the agreement is good for copper and, as far as the calculations go, reasonable for bismuth.Scattering of lattice waves at the boundaries of single crystals (including insulators) at temperatures of a few degrees absolute is shown to be consistent with the experiments of de Haas and Biermasz on KCl and to be responsible for the rise in thermal resistance in this region as suggested by Peierls.The assumption in the theory of electronic heat conduction that the lattice energy distribution function has its thermal equilibrium value is examined in an appendix. The conclusion is that it should be satisfactory, though the proof of this given by Bethe is seen to be inadequate.
Publisher
Cambridge University Press (CUP)
Cited by
164 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献