Abstract
We are using the term ‘bivariate Poisson process’ to describe a bivariate point process (N1(.), N2(.)) whose components (or, marginal processes) are Poisson processes. In this we are following Milne (2) who amongst his examples cites the case where N1(.) and N2(.) refer to the input and output processes respectively of the M/G/∈ queueing system. Such a bivariate point process is infinitely divisible. We shall now show that in a stationary M/M/1 queueing system (i.e. Poisson arrivals at rate λ, exponential service at rate µ > λ, single-server) a similar identification of (N1(.), N2(.)) yields a bivariate Poisson process that is not infinitely divisible.
Publisher
Cambridge University Press (CUP)
Reference3 articles.
1. (2) Milne R. K. Stochastic analysis of multivariate point processes. Ph.D. thesis, Australian National University (1971).
2. On Infinitely Divisible Random Vectors
3. Waiting Times When Queues are in Tandem
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献