A bivariate Poisson queueing process that is not infinitely divisible

Author:

Daley D. J.

Abstract

We are using the term ‘bivariate Poisson process’ to describe a bivariate point process (N1(.), N2(.)) whose components (or, marginal processes) are Poisson processes. In this we are following Milne (2) who amongst his examples cites the case where N1(.) and N2(.) refer to the input and output processes respectively of the M/G/∈ queueing system. Such a bivariate point process is infinitely divisible. We shall now show that in a stationary M/M/1 queueing system (i.e. Poisson arrivals at rate λ, exponential service at rate µ > λ, single-server) a similar identification of (N1(.), N2(.)) yields a bivariate Poisson process that is not infinitely divisible.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference3 articles.

1. (2) Milne R. K. Stochastic analysis of multivariate point processes. Ph.D. thesis, Australian National University (1971).

2. On Infinitely Divisible Random Vectors

3. Waiting Times When Queues are in Tandem

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Queueing output processes;Advances in Applied Probability;1976-06

2. Queueing output processes;Advances in Applied Probability;1976-06

3. On the input and output processes for a general birth-and-death queueing model;Advances in Applied Probability;1975-09

4. Random Flow in Queueing Networks: A Review and Critique;A I I E Transactions;1975-09

5. Random Flow in Queueing Networks: A Review and Critique;A I I E Transactions;1975-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3