Author:
Grünbaum Branko,Shephard G. C.
Abstract
1. Atilingis a collection= {Ti|i= 1, 2, …} of closed topological discs which covers the Euclidean planeE2, and of which the individualtiles Tihave disjoint interiors. We shall assume throughout that the intersection of any two tiles is a connected set. If each tile iscongruent(directly or reflectively isometric) to a given setT, then the tilingis calledmonohedralandTis called theprototileof. Clearly every monohedral tiling is locally finite.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Anschauliche Geometrie
2. Die regelmässigen Planteilungen;Haag;Z. Kristallogr.,1911
3. Reguläres Parkettierungsproblem
4. K voprosu o stroenii kristallov;Šubnikov;Bull. Acad. Imp. Sci.,1916
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Construction of Tilings with Transitivity Properties on the Square Grid;Lecture Notes in Computer Science;2024
2. k–isotoxal tilings from [pn] tilings;Journal of Mathematics and the Arts;2021-10-02
3. On the Number of p4-Tilings by an n-Omino;International Journal of Computational Geometry & Applications;2019-03
4. Marjorie Rice and the MAA tiling;Journal of Mathematics and the Arts;2018-06-26
5. Convex pentagons that admit i-block transitive tilings;Geometriae Dedicata;2017-07-12