Minimal Siegel modular threefolds

Author:

GRITSENKO VALERI,HULEK KLAUS

Abstract

The starting point of this paper is the maximal extension Γ*t of Γt, the subgroup of Sp4(ℚ) which is conjugate to the paramodular group. Correspondingly we call the quotient [Ascr ]*t=Γ*t\ℍ2 the minimal Siegel modular threefold. The space [Ascr ]*t and the intermediate spaces between [Ascr ]tt\ℍ2 which is the space of (1, t)-polarized abelian surfaces and [Ascr ]*t have not yet been studied in any detail. Using the Torelli theorem we first prove that [Ascr ]*t can be interpreted as the space of Kummer surfaces of (1, t)-polarized abelian surfaces and that a certain degree 2 quotient of [Ascr ]t which lies over [Ascr ]*t is a moduli space of lattice polarized K3 surfaces. Using the action of Γ*t on the space of Jacobi forms we show that many spaces between [Ascr ]t and [Ascr ]*t possess a non-trivial 3-form, i.e. the Kodaira dimension of these spaces is non-negative. It seems a difficult problem to compute the Kodaira dimension of the spaces [Ascr ]*t themselves. As a first necessary step in this direction we determine the divisorial part of the ramification locus of the finite map [Ascr ]t→[Ascr ]*t. This is a union of Humbert surfaces which can be interpreted as Hilbert modular surfaces.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3