Abstract
Let be a commutative normed algebra whose elements are functions on a Banach space, and in which the product is of convolution type. We show how , under reasonable assumptions upon its semi-group of translation operators and rather severe restrictions upon its semi-simplicity, can be renormed so that its completion contains mean Gâteaux or Fréchet differentials of all its members. In this way the function algebra can be embedded in an algebra of generalized functions defined as strong limits of functions, which admits strong differentiation as an everywhere-defined operation. The differentials show most of the properties of point-wise Gâteaux differentials. The completion of is an example of what I have called in (3) an ‘inflation’.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献