Slow viscous flow past a rotating sphere

Author:

Ranger K. B.

Abstract

Keller and Rubinow(l) have considered the force on a spinning sphere which is moving through an incompressible viscous fluid by employing the method of matched asymptotic expansions to describe the asymmetric flow. Childress(2) has investigated the motion of a sphere moving through a rotating fluid and calculated a correction to the drag coefficient. Brenner(3) has also obtained some general results for the drag and couple on an obstacle which is moving through the fluid. The present paper is concerned with a similar problem, namely the axially symmetric flow past a rotating sphere due to a uniform stream of infinity. It is shown that leading terms for the flow consist of a linear superposition of a primary Stokes flow past a non-rotating sphere together with an antisymmetric secondary flow in the azimuthal plane induced by the spinning sphere. For a3n2 > 6Uv, where n is the angular velocity of the sphere, U the speed of the uniform stream, and a the radius of the sphere, there is in the azimuthal plane a region of reversed flow attached to the rear portion of the sphere. The structure of the vortex is described and is shown to be confined to the rear portion of the sphere. A similar phenomenon occurs for a sphere rotating about an axis oblique to the direction of the uniform stream but the analysis will be given in a separate paper.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of toroidal magnetic field for the flow past a rotating rigid sphere embedded in the less permeable medium;GEM - International Journal on Geomathematics;2024-02-17

2. Fluid flow past a rotating sphere in the presence of a toroidal magnetic field;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2022-12-18

3. History hydrodynamic torque transitions in oscillatory spinning of stick-slip Janus particles;AIP Advances;2019-12-01

4. Heat Transfer Analysis of a Microspherical Particle in the Slip Flow Regime by Considering Variable Properties;Heat Transfer Engineering;2014-10-24

5. Creeping flow past rotating axi-symmetric isolated body-class of deformed sphere;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2014-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3