Author:
Robertson S. A.,Schwarzenberger R. L. E.
Abstract
The idea of exact filling bundle may be described roughly as follows. Suppose that ξk is a vector bundle with fibre Rk, total space E(ξk) and base X. We say that ξk is a real k-plane bundle on X. Let in be the trivial n-plane bundle on X so that E(in) = X × Rn. A bundle monomorphism j: ξk → in defines a map : E(ξk)→Rn obtained by composition of the embedding E(ξk)→E(in) and the product projection E(in) → Rn. The map represents each fibre of ξk as a k-plane in Rn.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Geometry of algebraic varieties;Journal of Soviet Mathematics;1976-06
2. On transnormal manifolds;Topology;1967-03
3. Bundles of Grassmannians and integrality theorems;Mathematical Proceedings of the Cambridge Philosophical Society;1967-01