Parametric surfaces

Author:

Besicovitch A. S.

Abstract

We shall first give some definitions concerning parametric surfaces. Denote by H a closed circle (disk) and by M a variable point on it. Let P = Ф(M) be a continuous function on H whose value P is a point in three-dimensional space. The symbols Ф(E), Ф−1(P), where E is a set of points on H and P a point in the three-dimensional space, will have their usual meaning. Ф−1(P) is a closed set. Any saturated continuum in Ф−1(P) or any point of Ф−1(P) that does not belong to such continua is called a Ф-element of H. Thus to any continuous function Ф(M) corresponds a representation of H in the form of the sum σQ of Ф-elements. The set of the pairs (P, Q), where Q runs through all Ф-elements of H and, for any Q, P = Ф(Q), is called a parametric surface, and any pair (P, Q) is called a point of the parametric surface. We shall often speak of a point Ф(M) of the parametric surface, by which we shall mean either the point (P, Q), where P = Ф(M) and Q is the Ф-element containing M, or the point P = Ф(M) of the three-dimensional space. The exact meaning will always be clear from the context. If there are exactly k points of the parametric surface whose first member is P0 we say that P0 is a point of multiplicity k. If k = 1, P0 is a simple point.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General methods of elliptic minimization;Calculus of Variations and Partial Differential Equations;2017-08

2. Parametric surfaces;Mathematical Proceedings of the Cambridge Philosophical Society;1951-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3