Abstract
The object of this note is to give an example of an infinite locally finite p-group which has no proper characteristic subgroup except the unit group. (A group G is a locally finite p-group if every finite set of elements of G generates a subgroup of finite order equal to a power of the prime p.) It is known that an infinite locally finite p-group cannot be simple, for if it were it would satisfy the minimal condition for normal subgroups, and so have a non-trivial centre (see(1)). However our example shows that it can be characteristically-simple. Examples are known of locally finite p-groups with trivial centre ((2), (4)), and of locally finite p-groups coinciding with their commutator groups ((1), (5)). Since the centre and commutator subgroup of a group are characteristic subgroups our example will have both of these properties. We may remark that the direct product of a simple, or even of a characteristically-simple group with itself any number of times is also characteristically-simple, but by Corollary 2.1 our group cannot be so decomposed.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Infinite soluble groups;Schmidt;Mat. Sborn.,1945
2. Infinite special groups;Schmidt;Mat. Sborn.,1940
3. Generalized nilpotent algebras and their associated groups;Mal'cev;Mat. Sborn.,1949
4. Nilpotent groups and their generalizations
5. Nilpotent algebras and p-groups;Ado;C.R. Acad. Sci.,1943
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献