Stochastic processes relating to particles distributed in a continuous infinity of states

Author:

Ramakrishnan Alladi

Abstract

Many stochastic problems arise in physics where we have to deal with a stochastic variable representing the number of particles distributed in a continuous infinity of states characterized by a parameter E, and this distribution varies with another parameter t (which may be continuous or discrete; if t represents time or thickness it is of course continuous). This variation occurs because of transitions characteristic of the stochastic process under consideration. If the E-space were discrete and the states represented by E1, E2, …, then it would be possible to define a functionrepresenting the probability that there are ν1 particles in E1, ν2 particles in E2, …, at t. The variation of π with t is governed by the transitions defined for the process; ν1, ν2, … are thus stochastic variables, and it is possible to study the moments or the distribution function of the sum of such stochastic variableswith the help of the π function which yields also the correlation between the stochastic variables νi.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cramér Rao Bound for Point Processes;IEEE Transactions on Information Theory;2022-04

2. Performance evaluation of IoT networks: A product density approach;Computer Communications;2022-03

3. Modelling time-dependent aggregate traffic in 5G networks;Telecommunication Systems;2019-10-30

4. A New Approach to Modeling Time Dependent Problems in Wireless Broadband Networks;Proceedings of the ACM Workshop on Distributed Information Processing in Wireless Networks;2017-07-10

5. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes;The Journal of Chemical Physics;2016-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3