Author:
Jahn H. A.,Howell K. M.,Mott N. F.
Abstract
ABSTRACTThe Wigner 6j–symbol, written in the formis shown to be invariant under separate permutations of A, B, C alone, separate permutations of α, β, γ alone and separate change in sign of any pair of α, β, γ; results equivalent to the new symmetry relations of Regge. Alternatively, written in the formwith J0 + J1 + J2 + J3 = K1 + K2 + K3, Jr(r = 0, 1, 2, 3) and K3 (s = 1, 2, 3) integral, it is invariant for separate permutations of the Jr and of the Ks. If Jm = max (J0, J1, J2, J3), then each 6j-symbol with distinct value may be associated with an ordered partition of Jm into 6 integral parts: Jm = n1 + n2 + n3 + p1 + p2 + p3, n1 ≥ n2 ≥ n3; p1 ≥ p2 ≥ n3. The 6j-symbol is proportional to the Saalschützianof unit argument.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. (1) Howell K. M. Tables of Wigner 6j-symbols (University of Southampton Research Report US 58–1, 1958).
2. ON ANGULAR MOMENTUM
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献