Abstract
The problem considered in this paper is that of finding the least possible h = h(x) such that a given arithmetic function a(n) should keep its average order in the interval x, x + h, i.e. that we haveandas x → ∞.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. On the functions ζ(s) and π(x);Čudakov;C.R. Acad. Sci. U.R.S.S,1938
2. THE MEAN-VALUE OF | ζ(12+it) |4
3. Über einige Summen, die von den Nullstellen der Riemann'schen Zetafunktion abhängen
4. (4) Hoheisel G. Primzahlprobleme in der Analysis. S.B. preuss. Akad. Wiss. (1930), pp. 580–8.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explicit bounds for large gaps between squarefree integers;Journal of Number Theory;2024-01
2. Klaus Friedrich Roth, 1925-2015;Bulletin of the London Mathematical Society;2018-06
3. Klaus Friedrich Roth. 29 October 1925 — 10 November 2015;Biographical Memoirs of Fellows of the Royal Society;2017-01
4. Starting with gaps between k-free numbers;International Journal of Number Theory;2015-08
5. Integer Points Close to Smooth Curves;Universitext;2012