Abstract
In [12] we elaborate the vague principle that the behaviour at infinity of the decreasing sequence of singular numbers sn(K) of a Hilbert–Schmidt kernel K is at least as good as that of the sequence {n−1/qω(n−1;K)}, where ωp is an Lp-modulus of continuity of K and q = p/(p − 1), where 1 ≤ p ≤ 2. Despite the author's effort to justify his study of refinements of the half-century old theorem of Smithies [13], that theorem remains the central result of the subject (viz. that for 0 < a ≤ 1, K∈Lip(a, p) implies that sn(K) = O(n−α−1/q)). For example, Cochran's omnibus theorems [5, 6] that delimit the Schatten classes to which a kernel belongs are based on the blending of ‘smoothness’ conditions and emphasize the pivotal role of the principal corollary of Smithies' theorem (viz. {sn}∈lr if r−1 < α + q−1). Cochran later offered in [7] a very simple derivation of the corollary from a Fourier series theorem of Konyushkov (see [2], vol. II, p. 197), whose proof was, however, at least as intricate as Smithies' demonstration.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
2. An extension of an operator inequality for s-numbers;Cochran;Proc. Amer. Math. Soc.,1977
3. Summability of singular values of L2 kernels–analogies with Fourier series;Cochran;Enseign. Math.,1976
4. Composite integral operators and nuclearity
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Singular numbers of smooth kernels. II;Mathematical Proceedings of the Cambridge Philosophical Society;1989-01