Static and dynamic characteristics of supersonic cruise missile with damaged wing

Author:

Zhuo C.F.ORCID,He Z.R.ORCID,Ren X.B.,Wang Y.K.

Abstract

Abstract Accurately evaluating the aerodynamic performance of the missile with damaged structures is very important for the subsequent flight control strategy. At present, few researchers have studied the aerodynamic characteristics of damaged supersonic cruise missiles. Based on CFD (computational fluid dynamics) solutions and the dynamic derivative identification method, the differences in static and dynamic characteristics between the damaged and undamaged models are compared. The results indicate that when the extent of damage increases, the change rate of drag coefficient at larger AoA (angle-of-attack) is greater than that at the smaller AoA. On the contrary, the change rate of lift coefficient at larger AoA is smaller than that at smaller AoA. Meanwhile, the absolute value of the static pitch moment decreases, but the absolute value of the roll moment increases. Damage causes a change in the absolute values of the pitch and roll dynamic derivatives, and the dynamic derivatives do not vary monotonically with the increase of AoA. The turning point occurs at about $\alpha$ = 5°. The areas of the hysteresis loops of the pitch-roll coupling moment increase, which makes the dynamic coupling characteristic between the pitch and roll directions increase. Finally, the maximum allowable damage extent of the missile wing that can achieve static trim is obtained and validated by controlling the deflection of the four rudders.

Publisher

Cambridge University Press (CUP)

Reference39 articles.

1. [36] Dupuis, A.D. Aeroballistic range and wind tunnel tests of the basic finner reference projectile from subsonic to high supersonic velocities, Defense Research and Development Canada Valcartier Canada TM, 2002.

2. [37] Green, L. , Spence, A. and Murphy, P. Computational methods for dynamic stability and control derivatives, 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.

3. New structure for an aerodynamic fin control system for tail fin-controlled STT Missiles;Kim;J. Aerospace Eng.,2011

4. Effect of lift with roll rate variation on re-entry vehicle impact;Crenshaw;J. Spacecraft Rockets,1971

5. A one-equation turbulence model for aerodynamic flows;Spalart;Rech. Aerospatiale,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3