Experimental analysis of noise disturbances generated by reaction wheel

Author:

Mankour A.ORCID,Smahat A.,Bensikaddour E.H.,Roubache R.

Abstract

Abstract Microvibrations originating from onboard disturbance sources can lead to a range of issues, including a decrease in satellite pointing accuracy, image distortion and blurring. Therefore, reaction wheels emerge as the primary sources of disturbance noise. This paper employs an experimental approach based on the real dynamics of rotating reaction wheel assembly, closely simulating on-orbit configurations to measure noise responses transferred to the satellite structure. An assessment of noise response behaviour, incorporating a comprehensive understanding of the factors influencing the levels, was conducted on a proto-flight satellite for three reaction wheels. Initially, reaction wheel assemblies underwent individual iterative balancing to reduce mass deviations. Subsequently, amplitude-time responses at different rotational speeds of reaction wheel assemblies (RWA) disturbance noise were measured. The experimental results demonstrate that each individually balanced reaction wheel generates independent perturbation noise level due to manufacturing imperfections. Hence, the necessity of wheels testing for accurate prediction and mitigation of disturbance levels is crucial, especially for payloads sensitive to microvibrations. Furthermore, increasing wheel speeds proportionally amplify disturbance noise levels. Therefore, implementing an optimised mission attitude control profile with lower rotation speeds of reaction wheels effectively reduces microvibration levels which minimises risks to payload performance and reduce power consumption.

Publisher

Cambridge University Press (CUP)

Reference44 articles.

1. [5] Dennehy, C.J. A survey of reaction wheel disturbance modeling approaches for spacecraft line-of-sight jitter performance analysis. European Space Mechanisms and Tribology Symposium, 2019, Munich, Germany.

2. A Comparative Design of Satellite Attitude Control System with Reaction Wheel

3. The influence of flywheel micro vibration on space camera and vibration suppression

4. Effect of Reaction Wheel Imbalances on Attitude and Stabilization Accuracy

5. Hybrid isolation of micro vibrations induced by reaction wheels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3