Experimental studies on the Hartmann tube

Author:

Rathakrishnan E.ORCID

Abstract

Abstract The effect of tube depth, the separation distance between the tube and nozzle exit, and the nozzle pressure ratio on the characteristics of the flow coming out of the Hartmann tube was studied experimentally. The configuration used in this work consists of an underexpanded sonic jet emanating from a convergent nozzle directed into a closed-ended cylindrical tube of the same diameter (D) as the nozzle exit. The nozzle was operated at two levels of underexpansion corresponding to nozzle pressure ratio (NPR) 3 and 5. The distance (S) from nozzle exit and tube inlet was varied from 0.4D to 4D. Discrete high-amplitude tones (the jet regurgitant, JRG) were produced, only at certain (periodic) intervals (near the shock-cell terminations) of spacing for NPR 3, while for NPR 5 the JRG tones are produced at all points beyond the first shock-cell. For locations other than these, high-frequency tones (screech mode) were observed. The connection between the jet structure and operating modes revealed that the location of standoff shock ahead of the tube with respect to the jet structure plays a dominant role in the observed ‘modes’ rather than the nozzle tube separation. The results reveal that the frequency response of longer tubes in JRG mode approaches their quarter wave frequencies. The high-frequency oscillations observed in the screech mode showed independency with cavity (pipe) depth, contrary to the available literature, the transition between ‘different modes’ oscillation is a function of cavity depth.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3