Improvement of UAV thrust using the BSO algorithm-based ANFIS model

Author:

Konar M.ORCID,Arık Hatipoğlu S.ORCID,Akpınar M.ORCID

Abstract

Abstract Unmanned aerial vehicles (UAVs), which are available in our lives in many areas today, bring with them new expectations and needs along with developing technology. In order to meet these expectations and needs, main subjects such as reducing energy consumption, increasing thrust and endurance, must be taken into account in UAV designs. In this study, Backtracking search optimisation (BSO) algorithm-based adaptive neuro-fuzzy inference system (ANFIS) model is proposed for the first time to improve UAV thrust. For this purpose, first, different batteries and propellers were tested on the thrust measuring device and a data set was obtained. Propeller diameter and pitch, current, voltage and the electronic speed controller (ESC) signal were selected as input, and UAV thrust was selected as output. ANFIS was used to relate input and output parameters that do not have a direct relationship between them. In order to determine the ANFIS parameters at the optimum value, ANFIS was trained with the obtained data set by using BSO algorithm. Then, the objective function based on the optimum ANFIS structure was integrated into BSO algorithm, and the input values that gave the optimum thrust were calculated using BSO algorithm. Simulation results, in which parameters such as engine, battery and propeller affecting the thrust are taken into account equally, emphasise that the proposed method can be used effectively in improving the UAV thrust. This hybrid method, consisting of ANFIS and BSO algorithm, can reduce the cost and time loss in UAV designs and allows many possibilities to be tested.

Publisher

Cambridge University Press (CUP)

Reference31 articles.

1. Small unmanned aircraft systems for low-altitude aerial surveys;Watts;J Wildlife Manag,2010

2. Neural network based redesign of morphing UAV for simultaneous improvement of roll stability and maximum lift/drag ratio

3. A data-driven predictive maintenance model to estimate RUL in a multi-rotor UAS;Ozkat;Int J Micro Air Veh,2023

4. Redesign of Morphing UAV for Simultaneous Improvement of Directional Stability and Maximum Lift/Drag Ratio

5. Adaptive Backtracking Search Algorithm for Induction Magnetometer Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3