Simulation of particle-laden flows and erosion in an axial fan stage considering the relative position of the blades

Author:

Ghenaiet A.ORCID

Abstract

Abstract Axial fans are vital accessories in aircraft ventilation systems, but, they may experience erosion from particulate flows, causing a decline in effectiveness over time. This study investigated the trajectories of two types of sand particles and erosion in an axial fan stage, considering the relative position of the blades facing the inlet guide vanes. The movement of particles was simulated using an in-house code that implements a Lagrangian approach along with a stochastic particle-eddy interaction model. The flow field was solved separately and the flow data was transferred to the particle trajectory code. The finite element method allowed for the tracking of particles through the computational cells and accurate determination of their impact positions. A semi-empirical erosion correlation was used to evaluate the local erosion rates, mass removal, and geometry deterioration. As a result, the rotor exhibits a high frequency of impacts and significant erosion on the leading edge of the blade, extending to the upper corner of the pressure side and blade tip, as well as the front of the suction side. In the inlet guide vane, the erosion is spread out along the entire pressure side but at lower erosion rates compared to the rotor blade. The erosion patterns obtained at different pitch-wise positions were cumulated to get better representation of erosion patterns. After being exposed to MIL-E5007E sand (0–1000 $\unicode{x03BC}$ m) at the highest concentration for 10 hours, the blade experienced a reduction of a 0.29% in mass, a 0.45% decrease in tip chord, and a 0.23% increase in tip clearance. On the other hand, AC-coarse sand (0–200 μm) resulted in a 0.23% decrease in blade mass, a 0.4% reduction in tip chord, and a 0.16% increase in tip clearance. The data that is available can be used to monitor the lifespan of axial fans of similar design and select appropriate coatings to protect against erosion.

Publisher

Cambridge University Press (CUP)

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3