Germination responses of the invasive hedge cactus (Cereus uruguayanus) to environmental factors

Author:

Panetta F. DaneORCID,Campbell ShaneORCID,Brooks SimonORCID,Brazier Dannielle,Chauhan Bhagirath SinghORCID

Abstract

AbstractHedge cactus (Cereus uruguayanus R. Kiesling; syn.: Cereus hildmannianus K. Schum.) is a columnar cactus that was introduced to Australia as an ornamental plant and has since become invasive in subhumid regions of Queensland and New South Wales. Compared with its congener, queen of the night (Cereus jamacaru DC.), which is currently invasive in both eastern and southern Africa, information on seed biology of C. uruguayanus is lacking. Experiments were conducted to study the effects of alternating day/night temperature, salt stress, water stress, and burial depth on germination and seedling emergence of four seed accessions of C. uruguayanus. Seeds were also subjected to a controlled aging test (CAT) to obtain an estimate of potential persistence under field conditions. The optimum temperature regime for germination of all accessions was 30/20 C. Germination decreased with an increase in sodium chloride (NaCl) concentration, but germination of all accessions (range 26% to 81%) occurred at 160 mM NaCl, indicating very high salt tolerance. Seed germination gradually decreased with an increase in water stress, but germination in all accessions (range 19% to 47%) occurred at −0.8 MPa. Seed viability and dormancy status were unaffected by exposure to salt level (320 mM NaCl) and water (−1.6 MPa) stress under which germination did not occur. Germination responses to all three factors were generally similar to those documented for C. jamacaru. The emergence of C. uruguayanus decreased with an increase in seed burial depth. The highest emergence (43%) was recorded for surface-sown seeds, and emergence was reduced to 0 at a burial depth of 2 cm. CAT results for two seed accessions indicated that seeds of C. uruguayanus are likely to demonstrate extended (>3 yr) persistence under field conditions, a prediction that is supported by evidence that germination of its small (2-mm) seeds is markedly reduced by burial.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3