Abstract
AbstractHarvest weed seed control (HWSC) is an effective technique for managing wild radish (Raphanus raphanistrum L.), a weed that retains its seed until harvest. However, earlier flowering time (leading to increased seed shedding before harvest) is a risk to HWSC effectiveness. This study investigated the effects of repeated HWSC on the evolution of R. raphanistrum flowering dates, using two methods: an adaptation of the SOMER model that included flowering genes (called SOMEF); and a mathematical calculation of the endpoints of flowering date evolution utilizing the relevant life-history equations. In weed management systems with highly effective herbicides, the additional use of HWSC predicted R. raphanistrum population extinction. Low weed numbers and rapid extinction meant that any gradual evolution in days to first flower (DFF) was insufficient to lead to HWSC evasion. In alternative management systems with less vigorous herbicide control and using HWSC, modeling predicted a maximum 2- to 3-d reduction in DFF. In contrast, mathematical calculations of the phenotypes maximizing seeds returned to the seedbank predicted an endpoint to evolution of 12-d earlier flowering, which matched field observations. However, genetic change postulated by the mathematical calculations was not hampered by a restriction to changing DFF allele frequencies. Unknown accompanying genetic changes could affect germination dates or flowering triggers.Simulation modeling that included only flowering genes failed to predict the magnitude of an observed 12-d reduction in DFF. Differences between the 12 d observed in the field (and predicted using mathematical calculations) and the modest changes demonstrated in this field-based modeling study are postulated to be due to unaccounted evolutionary changes in R. raphanistrum.
Publisher
Cambridge University Press (CUP)
Reference40 articles.
1. Walsh, MJ , Broster, JC , Aves, C , Powles, SB (2016) Influence of annual ryegrass seed retention height on harvest weed seed control (HWSC) and harvest efficiency. Pages 42–45 in 20th Australasian Weeds Conference. Perth, Western Australia: Weeds Society of Western Australia
2. Interpopulation Gene Flow by Pollen in Wild Radish, Raphanus sativus
3. Genetic variation in populations of Western Australian wild radish
4. Herbicide Resistance
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献