Author:
Sørensen Birger,Susrud Andres,Dalgleish Angus George
Abstract
AbstractThis study presents the background, rationale and method of action of Biovacc-19, a candidate vaccine for corona virus disease 2019 (Covid-19), now in advanced preclinical development, which has already passed the first acute toxicity testing. Unlike conventionally developed vaccines, Biovacc-19’s method of operation is upon nonhuman-like (NHL) epitopes in 21.6% of the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)’s spike protein, which displays distinct distributed charge including the presence of a charged furin-like cleavage site. The logic of the design of the vaccine is explained, which starts with empirical analysis of the aetiology of SARS-CoV-2. Mistaken assumptions about SARS-CoV-2’s aetiology risk creating ineffective or actively harmful vaccines, including the risk of antibody-dependent enhancement. Such problems in vaccine design are illustrated from past experience in the human immunodeficiency viruses domain. We propose that the dual effect general method of action of this chimeric virus’s spike, including receptor binding domain, includes membrane components other than the angiotensin-converting enzyme 2 receptor, which explains clinical evidence of its infectivity and pathogenicity. We show the nonreceptor dependent phagocytic general method of action to be specifically related to cumulative charge from insertions placed on the SARS-CoV-2 spike surface in positions to bind efficiently by salt bridge formations; and from blasting the spike we display the NHL epitopes from which Biovacc-19 has been down-selected.
Publisher
Cambridge University Press (CUP)
Reference38 articles.
1. The race for coronavirus vaccines: a graphical guide
2. Uniprot – Q9N2X3. C-Type Lectin Domain Family 4 Member M. Available at https://www.uniprot.org/uniprot/Q9H2X3 (accessed 01 October 2000).
3. A pneumonia outbreak associated with a new coronavirus of probable bat origin
4. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
5. Uniprot – P0DTC2. Spike Glycoprotein, Human SARS Coronavirus 2 (SARS-CoV-2). Available at https://www.uniprot.org/uniprot/P0DTC2 (accessed 22 April 2020).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献