Abstract
We consider the problem of counting the number of rational points of bounded height in the zero-loci of Brauer group elements on semi-simple algebraic groups over number fields. We obtain asymptotic formulae for the counting problem for wonderful compactifications using the spectral theory of automorphic forms. Applications include asymptotic formulae for the number of matrices over $\mathbb{Q}$ whose determinant is a sum of two squares. These results provide a positive answer to some cases of a question of Serre concerning such counting problems.
Publisher
Cambridge University Press (CUP)
Reference40 articles.
1. Spectral Decomposition and Eisenstein Series
2. Rational points on compactifications of semi-simple groups
3. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate;Landau;Arch. der Math. und Physik (3),1908
4. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres;Sansuc;J. Reine Angew. Math.,1981
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献