ON BOUNDEDNESS OF DIVISORS COMPUTING MINIMAL LOG DISCREPANCIES FOR SURFACES

Author:

Han JingjunORCID,Luo YujieORCID

Abstract

Abstract Let $\Gamma $ be a finite set, and $X\ni x$ a fixed kawamata log terminal germ. For any lc germ $(X\ni x,B:=\sum _{i} b_iB_i)$ , such that $b_i\in \Gamma $ , Nakamura’s conjecture, which is equivalent to the ascending chain condition conjecture for minimal log discrepancies for fixed germs, predicts that there always exists a prime divisor E over $X\ni x$ , such that $a(E,X,B)=\mathrm {mld}(X\ni x,B)$ , and $a(E,X,0)$ is bounded from above. We extend Nakamura’s conjecture to the setting that $X\ni x$ is not necessarily fixed and $\Gamma $ satisfies the descending chain condition, and show it holds for surfaces. We also find some sufficient conditions for the boundedness of $a(E,X,0)$ for any such E.

Funder

Fudan University

Simons Foundation

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference24 articles.

1. Two two-dimensional terminations

2. [4] Chen, B. , Upper bound of discrepancies of divisors computing minimal log discrepancies on surfaces, arXiv:2009.03613v1.

3. The minimal log discrepancies on a smooth surface in positive characteristic

4. [14] Kollár, J. ét al., Flip and abundance for algebraic threefolds, Astérisque 211 (1992).

5. A boundedness conjecture for minimal log discrepancies on a fixed germ

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinitesimal structure of log canonical thresholds;Documenta Mathematica;2024-05-08

2. On generalized minimal log discrepancy;Journal of the Mathematical Society of Japan;2024-04-23

3. On boundedness of singularities and minimal log discrepancies of Kollár components;Journal of Algebraic Geometry;2024-01-25

4. Complements, index theorem, and minimal log discrepancies of foliated surface singularities;European Journal of Mathematics;2024-01-08

5. On global ACC for foliated threefolds;Transactions of the American Mathematical Society;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3