Abstract
In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of $K$-theory with compact support.
Publisher
Cambridge University Press (CUP)
Reference38 articles.
1. Zero cycles on a singular surface. II;Srinivas;J. Reine Angew. Math.,1985
2. Étale descent for hochschild and cyclic homology
3. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II;Grothendieck;Publ. Math. Inst. Hautes Études Sci.,1965
4. 25. M. Morrow , Zero cycles on singular varieties and their desingularisations (2014), arXiv:1404.4649.
5. On the vanishing of negative K-groups
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. K-theory of valuation rings;Compositio Mathematica;2021-05-20
2. On the $K$-theory of pullbacks;Annals of Mathematics;2019-11-01
3. On the vanishing of relative negative K-theory;Journal of Algebra and Its Applications;2019-08-01
4. Murthy’s conjecture on 0-cycles;Inventiones mathematicae;2019-03-22
5. TOWARDS A NON-ARCHIMEDEAN ANALYTIC ANALOG OF THE BASS–QUILLEN CONJECTURE;Journal of the Institute of Mathematics of Jussieu;2019-02-01