Abstract
AbstractWe give simple homological conditions for a rational homology 3-sphere $Y$ to have infinite order in the rational homology cobordism group $\unicode[STIX]{x1D6E9}_{\mathbb{Q}}^{3}$, and for a collection of rational homology spheres to be linearly independent. These translate immediately to statements about knot concordance when $Y$ is the branched double cover of a knot, recovering some results of Livingston and Naik. The statements depend only on the homology groups of the 3-manifolds, but are proven through an analysis of correction terms and their behavior under connected sums.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey of the homology cobordism group;Bulletin of the American Mathematical Society;2023-10-06
2. Rational cobordisms and integral homology;Compositio Mathematica;2020-09