Abstract
Abstract
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given
$\alpha \in (0,1]$
and
$c>0$
(with
$c\leq 1$
if
$\alpha =1$
), a generalized number system is constructed with Riemann prime counting function
$ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $
and whose integer counting function satisfies the extremal oscillation estimate
$N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$
for any
$c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$
, where
$\rho>0$
is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
Funder
Belgian American Educational Foundation
Fonds Wetenschappelijk Onderzoek
Universiteit Gent
Publisher
Cambridge University Press (CUP)