Abstract
We prove field quantifier elimination for valued fields endowed with both an analytic structure that is $\unicode[STIX]{x1D70E}$-Henselian and an automorphism that is $\unicode[STIX]{x1D70E}$-Henselian. From this result we can deduce various Ax–Kochen–Eršov type results with respect to completeness and the independence property. The main example we are interested in is the field of Witt vectors on the algebraic closure of $\mathbb{F}_{p}$ endowed with its natural analytic structure and the lifting of the Frobenius. It turns out we can give a (reasonable) axiomatization of its first-order theory and that this theory does not have the independence property.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献