Abstract
Abstract
A key ingredient in the Taylor–Wiles proof of Fermat’s last theorem is the classical Ihara lemma, which is used to raise the modularity property between some congruent Galois representations. In their work on Sato and Tate, Clozel, Harris and Taylor proposed a generalisation of the Ihara lemma in higher dimension for some similitude groups. The main aim of this paper is to prove some new instances of this generalised Ihara lemma by considering some particular non-pseudo-Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level-raising statement.
Publisher
Cambridge University Press (CUP)
Reference24 articles.
1. Filtrations de stratification de quelques variétés de Shimura simples
2. On the generic part of the cohomology of compact unitary Shimura varieties
3. Level-raising and symmetric power functoriality, I
4. [11] Boyer, P. , Galois irreducibility implies cohomology freeness for KHT Shimura varieties, Bull. SMF tome 148 Fasc. 2020, 1–23, https://www.math.univ-paris13.fr~boyer/recherche/rho-irred.pdf.
5. Faisceaux pervers;Beilinson;Astérisque,1982
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献