Abstract
Abstract
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/– stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献