Abstract
We study the propagation of wave packets for a one-dimensional system of two coupled Schrödinger equations with a cubic nonlinearity, in the semiclassical limit. Couplings are induced by the nonlinearity and by the potential, whose eigenvalues present anavoided crossing: at one given point, the gap between them reduces as the semiclassical parameter becomes smaller. For data which are coherent states polarized along an eigenvector of the potential, we prove that when the wave function propagates through the avoided crossing point there are transitions between the eigenspaces at leading order. We analyze the nonlinear effects, which are noticeable away from the crossing point, but see that in a small time interval around this point the nonlinearity’s role is negligible at leading order, and the transition probabilities can be computed with the linear Landau–Zener formula.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献