THE RANGE OF TREE-INDEXED RANDOM WALK

Author:

Le Gall Jean-François,Lin Shen

Abstract

We provide asymptotics for the range $R_{n}$ of a random walk on the $d$-dimensional lattice indexed by a random tree with $n$ vertices. Using Kingman’s subadditive ergodic theorem, we prove under general assumptions that $n^{-1}R_{n}$ converges to a constant, and we give conditions ensuring that the limiting constant is strictly positive. On the other hand, in dimension $4$, and in the case of a symmetric random walk with exponential moments, we prove that $R_{n}$ grows like $n/\!\log n$. We apply our results to asymptotics for the range of a branching random walk when the initial size of the population tends to infinity.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference26 articles.

1. Multidimensional version of the results of Komlos, Major and Tusnady for vectors with finite exponential moments

2. Continuous Martingales and Brownian Motion

3. Laws of the iterated logarithm for intersections of random walks on Z4

4. 20. S. Lin , The range of tree-indexed random walk with drift, in preparation.

5. The range of tree-indexed random walk in low dimensions;Le Gall;Ann. Probab.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence in law for the capacity of the range of a critical branching random walk;The Annals of Applied Probability;2023-12-01

2. Regularity of an abstract Wiener integral;Stochastic Processes and their Applications;2022-12

3. Capacity of the range of tree-indexed random walk;The Annals of Applied Probability;2022-06-01

4. Capacity of the Range of Branching Random Walks in Low Dimensions;Proceedings of the Steklov Institute of Mathematics;2022-03

5. Емкость спектра значений ветвящихся случайных блужданий в пространствах малых размерностей;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3